A Machine Learning approach to spare parts inventory sizing under rare demand conditions
Keywords:
Strategic Spare Parts, Machine Learning, Zero-Inflated Poisson, Zero-Inflated Negative Binomial, MaintenanceAbstract
The industry faces, among its many challenges, the need to appropriately size the inventory of strategic spare parts. These items typically exhibit a history of low consumption; however, their unavailability may result in delays in repair and maintenance activities, leading to operational unavailability. Such effects may occur at different scales. On the one hand, maintaining a large inventory of strategic items can ensure higher operational availability. On the other hand, it entails additional costs related to storage, preservation, and tied-up capital. Therefore, a trade-off solution must be achieved. The use of traditional or simpler techniques to determine the optimal inventory level for each spare part often faces limitations due to the lack of historical data, especially in facilities at the early stages of their operation and maintenance lifecycle. Moreover, the diversity of applications associated with certain materials further increases the complexity of this problem. In this context, the present work proposes a machine learning–based methodology using two well-established algorithms: Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB). This approach is applied to approximately 27,000 spare parts, enabling a faster definition of strategic inventory levels and generating value for the company.
Downloads
References
Agresti, A. (2002). Categorical data analysis. Wiley.
Bacchetti, A., & Saccani, N. (2012). Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice. Omega, 40(6), 722–737.
Basten, R. J. I., & van Houtum, G. J. (2014). System-oriented inventory models for spare parts. Surveys in Operations Research and Management Science, 19(1), 34–55.
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Analysis of count data. Chapman and Hall. Cameron, A. C., & Trivedi, P. K. (1991). Regression-based tests for overdispersion in the Poisson model. Journal of Econometrics, 46(3), 347–364. https://doi.org/10.1016/0304-4076(90)90014-K
Cavalieri, S., Gaiardelli, P., Ierace, S., & Maccarrone, P. (2008). A decision-making framework for managing maintenance spare parts. Production Planning & Control, 19(4), 379–396. https://doi.org/10.1080/09537280802034471
Costantino, F., Di Gravio, G., Shaban, A., & Tronci, M. (2018). Spare parts management for irregular demand items. Omega, 81, 57–66. https://doi.org/10.1016/j.omega.2017.09.009
Dekker, R., Bloemhof, J., & Mallidis, I. (2012). Operations research for green logistics: An overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219(3), 671–679.
Digiesi, S., Mossa, G., & Rubino, S. (2015). A sustainable EOQ model for repairable spare parts under uncertain demand. IMA Journal of Management Mathematics, 26(2), 185–203.
Exton, T., & Labib, A. (2002). Spare parts decision analysis – The missing link in CMMSs (Part II). Journal of Maintenance & Asset Management, 17(1), 14–21.
Fildes, R., Goodwin, P., Lawrence, M., & Nikolopoulos, K. (2009). Effective forecasting and judgmental adjustments: An empirical evaluation and strategies for improvement in supply-chain planning. International Journal of Forecasting, 25(1), 3–23.
Flores, B. E., & Whybark, D. C. (1986). Multiple criteria ABC analysis. International Journal of Operations & Production Management, 6(3), 38–46.
Flores, B. E., & Whybark, D. C. (1987). Multiple criteria ABC analysis. International Journal of Operations & Production Management, 7(1), 79–85.
Ghobbar, A. A., & Friend, C. H. (2003). Evaluation of forecasting methods for intermittent parts demand in the field of aviation: A predictive model. Computers & Operations Research, 30(14), 2097–2114.
Gomes Junior, M. D. (2020). Deactivating a motor generator set in a stationary unit to produce offshore oil in decommissioning using reliability, availability and maintainability analysis and life cycle cost. Revista Offshore. https://doi.org/10.48072/2525-7579.rog.2020.248
Gomes Junior, M. D., & Rocha Filho, L. B. (2021). Estudo de confiabilidade da proposta de reorganização das votações de detectores de gás dos FPSOs da cessão onerosa. In Anais do Congresso Brasileiro de Manutenção e Gestão de Ativos. ABRAMAN.
Guenverir, H. A., & Erel, E. (1998). Multicriteria inventory classification using a genetic algorithm. European Journal of Operational Research, 105(1), 29–37.
Hu, Q., Boylan, J. E., Chen, H., & Labib, A. (2017). Spare parts classification in industrial manufacturing using the dominance-based rough set approach. European Journal of Operational Research, 262(3), 1136–1163.
Hu, Q., Boylan, J. E., Chen, H., & Labib, A. (2018). OR in spare parts management: A review. European Journal of Operational Research, 266(2). https://doi.org/10.1016/j.ejor.2017.07.058
Hosmer, D. W., Jr., & Lemeshow, S. (2000). Applied logistic regression. Wiley. Kazemi Zanjani, M., & Nourelfath, M. (2014). Integrated spare parts logistics and operations planning for maintenance service provider. International Journal of Production Economics, 158, 1–12. https://doi.org/10.1016/j.ijpe.2014.07.012
Kollars, R. J. (2014). Categorical data analysis for the behavioral and social sciences. Routledge.
Lee, L. H., Kang, H. Y., & Huang, C. C. (2011). The effect of lead time on inventory levels with predetermined order quantity. International Journal of Production Research, 49(15), 4563–4576. https://doi.org/10.1080/00207543.2010.527112
Long, J. S. (1997). Regression models for categorical and limited dependent variables. Sage Publications.
McCullagh, P., & Nelder, J. (1989). Generalized linear models. Chapman and Hall.
Minami, M., Lennert-Cody, C. E., Gao, W., & Roman-Verdesoto, M. (2007). Modeling shark bycatch: The zeroinflated negative binomial regression model with smoothing. Fisheries Research, 84(2), 210–221. https://doi.org/10.1016/j.fishres.2006.10.019
Mirzahosseinian, H., & Piplani, R. (2011). A study of repairable parts inventory system operating under performance-based contract. European Journal of Operational Research, 214(2), 256–261. https://doi.org/10.1016/j.ejor.2011.04.035
Mor, R. S., Singh, S., Bhardwaj, A., & Singh, L. P. (2021). Spare parts inventory management in the warehouse: A lean approach. International Journal of Industrial Engineering & Production Research, 32(2), 1–11. https://doi.org/10.22068/ijiepr.32.2.1
Nahmias, S. (2015). Production and operations analysis (6th ed.). Waveland Press.
Peng, R. D. (2016). R programming for data science. Chapman and Hall/CRC.
Poppe, J., Boute, R., & Lambrecht, M. (2017). Numerical study of inventory management under various maintenance policies. Reliability Engineering & System Safety, 168, 262–273. https://doi.org/10.1016/j.ress.2017.06.012
Rezaei, H., Ghodsi, R., & Jafari-Eskandari, M. (2018). A new methodology to optimize target stock level for unpredictable demand of spare parts: A case study. IFAC-PapersOnLine, 51(11), 538–543. https://doi.org/10.1016/j.ifacol.2018.08.374
Romeijnders, W., Teunter, R., & van Jaarsveld, W. (2012). A two-step method for forecasting spare parts demand using information on component repairs. European Journal of Operational Research, 220(2), 386–393. https://doi.org/10.1016/j.ejor.2012.01.019
Sathish, N., Kumar, V. S., & Prasad, K. R. (2019). Procurement methodologies to optimize the inventory levels of spare parts. International Journal of Recent Technology and Engineering, 8(3), 1662–1669. https://doi.org/10.35940/ijrte.C4437.098319
Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling (3rd ed.). Wiley.
Stokes, M. E., Davis, C. S., & Koch, G. G. (2012). Categorical data analysis using the SAS system. SAS Institute.
Syntetos, A. A., & Boylan, J. E. (2005). The accuracy of intermittent demand estimates. International Journal of Forecasting, 21(2), 303–314.
Syntetos, A. A., Boylan, J. E., & Disney, S. M. (2009). Forecasting for inventory planning: A 50-year review. Journal of the Operational Research Society, 60, 149–160.
Tapia-Ubeda, F. J., Miranda, P. A., & González-Prida, V. (2019). Supplier selection for spare parts supply chain networks. IFAC-PapersOnLine, 52(13), 2237–2242. https://doi.org/10.1016/j.ifacol.2019.11.538
Turrini, L., & Meissner, J. (2019). Spare parts inventory management: New evidence from distribution fitting. European Journal of Operational Research, 273(1), 118–130. https://doi.org/10.1016/j.ejor.2017.09.039
van der Auweraer, S., Boute, R., & Lambrecht, M. (2019). Forecasting spare part demand with installed base information: A review. International Journal of Forecasting, 35(1), 181–196. https://doi.org/10.1016/j.ijforecast.2018.09.002
van Horenbeek, A., Pintelon, L., & Muchiri, P. (2013). Joint maintenance and inventory optimization systems: A review. International Journal of Production Economics, 143(2), 499–508. https://doi.org/10.1016/j.ijpe.2012.04.001
Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57(2), 307–333.
Wang, W., & Syntetos, A. A. (2011). Spare parts demand: Linking forecasting to equipment maintenance. Transportation Research Part E, 47(6), 1194–1209.
Yu, M.-C. (2011). Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Systems with Applications, 38(4), 3416–3421.
Zipkin, P. H. (2000). Foundations of inventory management. McGraw-Hill.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Marcello Dantas Gomes Júnior

This work is licensed under a Creative Commons Attribution 4.0 International License.